
Computational Thinking: Building a Model Curriculum

William A. Booth Greg Hamerly David Sturgill
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science

Baylor University Baylor University, NC State University

Waco, TX 76798, USA Waco, TX 76798, USA Raleigh, NC 27695, USA

bill_booth@baylor.edu greg_hamerly@baylor.edu dbsturgi@ncsu.edu

Ivy Hamerly Todd Buras

Dept. of Political Science Dept. of Philosophy

Baylor University Baylor University

Waco, TX 76798, USA Waco, TX 76798, USA

ivy_hamerly@baylor.edu todd_buras@baylor.edu

ABSTRACT

 As computing technology becomes increasingly ubiquitous, the need to understand how

computers solve problems and the need to decipher what types of problems are best solved with

computational tools is becoming increasingly relevant throughout the academic and commercial

fields. This paper describes a computational thinking curriculum development project. The

purpose of this one-semester course is to introduce computational thinking to undergraduate

students who are not computer science majors. This course was designed to engage a broad

group of students, including those not ordinarily accustomed to using computation as a tool. The

course includes skills such as problem abstraction and decomposition, understanding

fundamental programming concepts, and appreciating the practical and theoretical limits of

computation. With these goals in mind, problems from a diverse set of fields were developed to

demonstrate how computational thinking could be applied in a variety of academic and real-

world problem domains. These sample problems were then used to build a new course in

computational thinking targeted at non-computer science majors. After testing and refining the

curriculum, the course was evaluated in two instructional settings to establish its effectiveness.

This investigation revealed that formal training in computational thinking decreases computer

anxiety while increasing the participants’ ability to use computational thinking as a problem

solving strategy.

General Terms

Curriculum Development

Keywords

Computational Thinking, Curriculum Development, Pedagogy

1. INTRODUCTION

 This paper reports on a computational thinking curriculum recently developed through a

National Science Foundation (NSF) Pathway to Revitalized Undergraduate Computer Education

(CPATH) grant. The purpose of this one-semester course is to introduce computational thinking

to undergraduate students who are not computer science majors. This course is intended to

engage a broad range of students, including those not ordinarily accustomed to using

computation as a tool. This course includes skills such as problem abstraction and

mailto:bill_booth@baylor.edu
mailto:greg_hamerly@baylor.edu
mailto:dbsturgi@ncsu.edu
mailto:ivy_hamerly@baylor.edu
mailto:todd_buras@baylor.edu

decomposition, understanding fundamental programming concepts, and appreciating the

practical and theoretical limits of computation.

There are several distinctive aspects to our course. First, it is intended for all students rather

than just those in science-related disciplines. Second, it is collaborative. Students work in small

groups that change periodically. Third, it is problem-based. Students learn computational

thinking by solving real problems. Finally, problems given in the course come from disciplines

outside of computer science.

Faculty from across the university helped to develop a set of problems to be assigned to

students. Because the course focuses on how computational thinking may be used in other

disciplines, we expect it will better train non-computer science majors than the existing

introductory course for computer science majors. We anticipate that investigating computational

problems from a variety of application areas will make the computational topics more interesting

and will prepare students to think creatively and broadly about how computational thinking

might be relevant and effective on problems in their own discipline.

2. COMPUTATIONAL THINKING

Computational thinking has been around since the very beginning of computer science. It

was originally known as algorithmic thinking in the 1950s and 1960s [3]. Computer technology

has become nearly ubiquitous in the last decade, but this technology holds little utility if people

are not able to use it effectively. Jeannette Wing [14] suggests "Computational thinking is a

fundamental skill for everyone, not just for computer scientists." She defines computational

thinking as"... solving problems, designing systems, and understanding human behavior, by

drawing on the concepts fundamental to computer science."

Not only do students in information-based fields like science and engineering require a

basic facility with computational tools, but also this is increasingly necessary for students in non-

science fields. Professionals in creative arts use technology for design and production, while

those in humanities use and search digitized sources (books, documents, images) for content

analysis. Information-based questions often arise in business and social sciences, as well.

A divergence between those who create technology and those who use it has inhibited

progress in some fields. Often, those who depend on computing technology are unfamiliar with

best practices and even what sorts of computing tasks are possible. Of course, not everyone

needs to become an expert in underlying technologies to enjoy their benefits; in many cases, a

modest degree of training in computational thinking can help to enhance these benefits.

Computational thinking offers an algorithmic approach to questions, problems and tasks. It

allows people to leverage technology, such as computer software, to solve problems that are

much larger, more complex, or more tedious than what they would be able or willing to solve by

hand. It depends on an understanding of the basics of computation, including abstraction

(generalization of objects or procedures), decomposition (breaking a procedure into simpler

parts), sequence, independence, decisions, functions, input, and output [12]. It also involves

understanding the limits of computation, both practically and theoretically, as well as issues of

scale.

Those who can think computationally are at an advantage in effectively applying

technology. They are able to understand where computational solutions are possible and how

these solutions can be applied to reduce human effort. This understanding can improve quality or

enable solutions to new problems. They can be an asset to both their field and at the same time

expand the field of computing. Kramer [7] and Hazzan [5] discuss how abstraction is a

fundamental aspect of computational thinking. Hazzan suggests that two keys to teaching ‘Soft

ideas’ (i.e. abstractions) are teaching explicit models of abstraction, and further that "... students

must be active: they must do and they must reflect on what they are doing." In other words,

having students apply their knowledge provides a path for engaging them in learning [7, 5].

Pulimood and Wolz [11] seem to agree, and further propose that collaboration is necessary

in upper-division computer science education, when they write "Three essential themes emerge:

(1) creative design requires an authentic inquiry-based pedagogy, (2) modern problem solving

occurs in a collaborative community, rather than in isolation, and (3) problem solving with

computers is increasingly a multidisciplinary endeavor." While this perspective focuses on

upper-division computer science, collaboration is also important in introductory courses, when

students may have a limited view of the potential of computational thinking. Involving students

who are studying a variety of fields will enhance the collaborative nature of a course, and reflect

a more realistic vision of computational thinking, as it will be needed outside the classroom.

Buckley [1] suggests that computing education can be motivated by a desire to solve

problems of society. In other words, rather than identify a computing problem and a computing

solution, start by identifying societal problems, and see how computing can address the issues.

Lu and Fletcher [8] suggest that 'computational thinking language' should be integrated into

students’ learning during their formative (i.e. K-12) education, long before the concept of

programming is introduced. We agree that students should be exposed to computational thinking

as early as possible, and that computational concepts can be introduced in a multitude of ways, of

which programming is one. Since we work in the university setting, we expect that students who

have had a formative education that includes computational thinking will be ready to use

programming as one part of a course on the topic. Those students who haven’t been previously

introduced to computational thinking will still benefit from their facility with everyday

technology.

3. RELATED WORK

There have been a number of efforts to introduce computational thinking to students who

are not computer science majors. Most of these are primarily focused on teaching students in one

of the STEM majors.

Christine Alvarado (Harvey Mud), Rubin Landau (Oregon State), and Jennifer Campbell

(U. Toronto) discussed their experiences of offering introductory computer science courses to

non-computer science STEM students in a SIGCSE 2008 panel [13]. The first two use a

problem-based approach. Another example is Cortina [2] who teaches a course in computer

science for non-computer science majors which uses no programming. Instead, they study a

broad set of computational topics and use a flowchart simulator (Raptor) to study algorithm

behaviors. Pulimood and Wolz report on a course intended to increase collaboration among a

broad spectrum of students to develop a computer game [11]. They believe that collaboration and

inquiry-based instruction are important when instructing students about computer science.

Qin [12] found that offering a course on computer science to biology students worked best

when students were paired and when they worked on concrete problems. Hambrusch et al. [4]

offered a course on computational thinking for science majors that use problems from scientific

disciplines to motivate computational topics.

Their work is similar to ours, but our approach is much broader, inviting disciplines both

inside and outside of STEM. This curriculum development project was developed by drawing on

experts from across the university to help identify and developing computational problems form

a diverse collection of academic and professional disciplines.

Perkovic et al. [10] introduced a framework for incorporating computational thinking

topics across a broad selection of courses in a liberal arts curriculum. This is similar to our work

in that it uses computation with areas not typically associated with computer science. While they

suggest pushing computation out to many classes with different subjects, our approach is to bring

together many disciplines into one course that focuses on computation. These complementary

approaches have different advantages. An advantage of Perkovic’s approach is that computation

is an integrated concept across the curriculum. One advantage of our approach is simplicity of

establishing and offering the course.

4. CURRICULUM DEVELOPMENT

This new course was developed through a NSF CPATH grant, over a one-year period.

Collaborators were solicited from departments across Baylor University, the University of Mary

Hardin Baylor, and Elon University. A key component of this course was the faculty support

from external (non-computer science) departments. Faculty who agreed to collaborate began

with a one-hour meeting in which the goals for the new course were explained in detail. The

collaborating faculty then spent time on their own thinking about what problems in their

respective fields would serve as good topics for a course in computational thinking.

This initial meeting was followed by a series of half-day workshops where the

collaborators worked to more fully develop their ideas and submit written problem statements.

Finally, the collaborating faculty were invited to give a short lecture to the students in the

computational thinking course about their content topic and computational problem. This lecture

provided background on the problem from the faculty member’s domain. In addition to

providing specific details about the computational problem, the class would be solving during the

weekly lab.

In the second year of grant support, we offered the course for students. During the semester

course, the collaborating faculty gave lectures from a diverse set of academic disciplines

including political science, engineering, journalism, film and digital media, philosophy, music,

and nursing. For each topic, the students were introduced with a traditional lecture and then

worked in small groups to create a computational solution to a problem about the topic during a

subsequent lab. Naturally some problems were more difficult to solve and as a result took several

lab meetings to arrive at an acceptable computational solution.

One important skill developed during this course was the ability to analyze a problem to

determine what strategy would lead to a satisfactory solution. Some problems were solved using

existing computer applications such as Microsoft Excel; other problems required the creation of

custom applications, which were written in Python. The students did not directly solve the most

challenging problems. When the analysis revealed that the problem was too complicated to be

solved by a novice, the students wrote a program specification and had that application

developed by an expert. They then used the expert's implementation to solve several instances of

the complex computational problem.

5. COURSE OVERVIEW

We first introduced students to general concepts in computational thinking. The first week

focused on topics like the significance of computational thinking, skills for problem reading (e.g.

identifying input, output, and desired out? comes, etc.), introducing a list of canonical problem

types (e.g. optimization, summarizing, generation, etc.), introducing problem-solving skills such

as problem decomposition, abstraction, and teaching basic concepts of programming in the

language deemed appropriate for the course. In the remainder of the course, students mastered

computational tools and techniques by progressing through a graduated sequence of

collaborative problem-solving experiences.

Each week the students received one or more problems to solve. Our intent was to offer

problems that stimulated students’ imaginations and creativity, giving them reason to think

individually about the problem outside of class. During class laboratory sessions, students

worked with classmates to refine their ideas and implement a solution.

The problems are ordered by topic and by difficulty. This allows us to introduce new

computational tools as the semester progresses, such as new functional abstractions (e.g., loops,

branching, functions) and data abstractions (e.g., arrays, lists, matrices, trees).

Each week, collaborative student groups are shuffled permitting participants to work with

peers from many other disciplines. A group is evaluated based on the solutions it produces. They

may be evaluated for correctness, efficiency, closeness of approximation, or other criteria. To

track the progress of individual students, we aggregate the performance of the groups they have

worked in over the semester.

A key part of learning to think computationally is having students develop their own

problems based on their interests and disciplines. Thus, we included an opportunity for students

to write their own problem descriptions, including proposed solutions. This practice has been

used effectively in some Computer Science courses at our university. It helps students solidify

their writing and communication skills and gives them a better sense of what sorts of problems

can be computationally solved and how well they might scale to larger problem sizes.

Due to space limitations it is not possible to fully describe all the problems covered in this

course. We do, however, share two of the problems that seemed to resonate with the students.

The first problem is "Prisoner's Dilemma", which comes from political science. The second

problem is "Probability, Testimony and Belief'', which comes from philosophy.

5.1 Prisoner's Dilemma

This subsection describes a topic drawn from the field of political science. After an

introduction to the topic, we give a simulation-based problem, which students may use to explore

the topic with computation.

5.1.1 Introduction

How can rational, selfish actors cooperate for their common good? This is the essential

question at the root of many problems in politics and governance. In one sense, the political

realm is a "kill or be killed" environment. There are incentives to take advantage of others in

order to avoid becoming a victim. At the same time, there are benefits that come with

cooperation. How can rational, selfish actors build enough trust in each other to make

cooperation possible?

One-way of thinking about this problem is to use the Prisoner's Dilemma (PD) [9]. You

have most likely seen the PD situation play out in police procedural dramas, like CSI or Law and

Order. Two people have committed a crime together. They have both been arrested and the

detectives are interviewing them in separate interrogation rooms. Each suspect is presented with

the same information: If you tell us what happened first, we'll make sure your accomplice gets a

heavy sentence and the District Attorney will give you immunity from prosecution. If your

accomplice breaks down before you do, you will get the blame for this crime and your

accomplice will go free. If you both hold your silence, we can still prosecute you for some minor

crimes. The detectives are hoping that both suspects will turn each other in at the same time and

they will both get jail time for their crimes.

 Player 2

Collude Cheat

Player 1
Collude 20, 20 0, 30

Cheat 30, 0 10, 10

Another way to present this dilemma is given in Table 1. In the table, "cheat" means that a

player gives up information about the crime that helps punish the other player, and "collude"

means that a player withholds such information. If Player 1 assumes that Player 2 is

untrustworthy and prone to cheating, then Player 1 can minimize his/her losses by cheating as

well. If Player 1 assumes that Player 2 will be faithful to the deal and hold his/her silence

(collude), then Player 1 can't help noticing that his/her payoff would be better if he/she cheats

(i.e. blames the accomplice for the crime) and Player 2 does not cheat. Player 2 has the same

realization. The end result is that both players are tempted to cheat and usually both go to jail.

Table 1: Payoffs for colluding or cheating in the Prisoner's Dilemma game. Within

each cell, the two numbers represent the payoffs for players 1 and 2, respectively

(higher payoffs are more desirable). "Cheat" means that a player gives up

incriminating information about the other player, while "collude" means

withholding this information.

Under what circumstances would the accomplices resist the temptation to turn on each

other?

Researchers have found that in a one-shot version of this game the equilibrium is that both

players cheat. In an iterated game, though, it is possible for the players to collude with each

other. By playing this game over and over again, the two players can train each other to

cooperate.

In the depictions of this situation on television, the suspect that resists the temptation to

cheat often mentions that their accomplice has a network of fellow criminals who could punish

them even if the accomplice goes to jail.

The Prisoner's Dilemma analogy has been applied to many situations, but one of the most

famous applications is to the study of global nuclear strategy (see Table 2).

 USSR

Cooperate Attack

USA
Cooperate 20, 20 0, 30

Attack 30,0 10,10

Table 2: A hypothetical payoff table for global nuclear strategy.

Both the USA and the USSR have large arsenals of nuclear weapons: In a standoff, both

are tempted to attack their opponent using their nuclear weapons. However, each country knows

the other country also has access to nuclear weapons. If the USSR can get away with nuking the

USA and be assured that the USA would not be able to counter-strike, then there is the potential

for the USSR to win the Cold War using nuclear weapons. If neither country can give a strong

enough signal that they would counter-strike, then both countries are tempted to nuke each other.

If the countries can convince each other that they would definitely fire off a counter-strike, then

the equilibrium outcome is for both countries to refrain from using their nuclear weapons on

each other.

5.1.2 Problem Statement

Your task is to code an iterated Prisoner's Dilemma simulator where players will take the

following strategies:

• Always cheat

• Always cooperate

• Alternate between cheating and cooperating

• Tit-for-tat: Choose to cooperate in the first round. If the other player cheats, punish

them by cheating in the next round. If the other player cooperates, reward them by

cooperating in the next round.

• Reverse tit-for-tat: Punish cooperation with cheating. Reward cheating with

cooperation.

What strategy works the best in one-shot game? In an iterated game?

5.2 Probabilities, Testimony and Belief

This subsection describes a topic drawn from the field of philosophy. After an introduction

to the topic, the students are invited to use computation to illuminate Bayesian reasoning.

5.2.1 Introduction

One major topic in philosophy is the evaluation of our beliefs to determine when and under

what conditions a belief has a certain merit, like rationality. The rationality of our beliefs has a

lot to do with evidence. Rational beliefs are proportioned to our evidence. Determining the

weight of a piece of evidence is a very complicated procedure, typically modeled by Bayesian

reasoning. The Bayesian model can yield very surprising results, and there is strong evidence

that we are not naturally very good at estimating accurately the weight of our evidence. Thinking

about the rationality of our beliefs, at this point, is heavily computational, and often involves

very large numbers. Usually, with a little instruction, students can work with the Bayesian model

on pen and paper. But it is difficult, and, a bit of a distraction from the main philosophical point.

In fact, students may well understand the nature of Bayesian reasoning better by turning to

computational tools. The important point is not crunching the numbers, so to speak, but

understanding how the numbers are interdependent.

5.2.2 Problem Statement

One good way to illustrate the issues surrounding the weight of evidence is to calculate the

tipping point for believing something based on testimony of eyewitnesses (or of experts). No

matter how unlikely an event may be (provided that the event is not impossible) there are a

number of credible independent witnesses that would convince us that the event had occurred,

and a point at which it would be positively irrational not to believe that the event had occurred.

The computational problem is to fix that number, and to see how it is a function of the

improbability of the event in question, of the reliability of the witnesses (or experts) and of their

independence. Using Bayesian reasoning, and assigning plausible estimates (which they should

be able to explain), students should be able to compute the number of eyewitness (or experts)

testimony needed to convince them to believe something, no matter how improbable. Good

examples can be drawn from any number of domains. One might ask, questions like these: How

many qualified testifiers would it take to convince me that two students composed precisely the

same 500 word essay? How many trusted reports would it take to convince me that a man

survived a skydiving accident in which his parachute failed to open?

For this lab, you will create a small program that calculates the probability of an event,

using Bayes' theorem, given several parameters that you will adjust. You will answer the

question: based on reasonable estimates of prior probabilities, how many eyewitnesses would be

necessary to convince a rational person that man survived a sky-diving accident in which his

parachute failed to open?

6. EVALUATION PLAN

The curriculum was evaluated in two instructional settings to establish its effectiveness.

Initially it was used as the curriculum for a new course, Computational Strategies (CSI 3305)

Offered for the first time at Baylor University in the 2011 fall semester. A subsequent half-day

computational thinking seminar was also conducted during the 2011-2012 winter break which

presented a subset of the modules taught in the semester long course.

We had hoped to evaluate the impact of the course using a mixed method case study. The

quantitative portion of the study planned to use a quasi-experimental design. The comparison

group would be students enrolled in a first-semester computer science course for technical

majors. Historically, 75% of the 200-plus students enrolled in the course are non-computer-

science majors. Students enrolled in our new computational thinking course were to be used as

the treatment group and a pairwise comparison was to be made with the control group to control

for nuisance variables. Unfortunately, despite our best efforts, enrollment in the new course was

significantly lower than we had anticipated. For this reason, only anecdotal findings can be

reported from the first offering of CSI 3303.

To provide additional evidence of the effectiveness of this new curriculum, a half-day

computational thinking workshop was evaluated using two instruments that were administered to

all participants both before and immediately after the workshop. The first instrument, the

Computational Thinking Problem Solving Inventory (CTPSI), was designed to measure how

often students appropriately select a computational strategy, when designing a solution to a

problem. This instrument was developed at Baylor University and field tested during the fall

2011 term. This inventory was given to 51 participants. 22 of the participants had no formal

training in computational thinking while the remaining 29 participants had at least two years

experience in using computational thinking as a problem solving strategy. A factor analysis of

the CTPSI revealed that it loaded on a single factor and the instrument's reliability was

established with a Cranach’s alpha of 0.771.

The second instrument used to evaluate the impact of the half-day workshop was the

Computer Anxiety Rating Scale (CARS) [6]. The CARS is a twenty-item instrument designed to

measure anxiety associated with computer tasks. Modifications were made to several of the items

to allow them to reflect the modern use of technology. The CARS has high internal consistency

(a= .87), good test-retest reliability (r = .70), and good discriminant validity [6].

7. RESULTS

Due to the small number of students participating in the first offering of CSI 3303, only

anecdotal evidence can be provided. At the end of the semester each student in the class was able

to clearly articulate a definition of computational thinking. Additionally, the students' final

projects where of high quality and provided clear evidence that the students were able to apply

the computational thinking skills taught in this course. Finally, the end of semester course

evaluations, reported in Table 3, indicate the students enjoyed the course and felt the curriculum

model was effective in teaching computational thinking.

 Strongly Agree Agree

Assignments contributed to

student’s learning.

60% 40%

Students learned a great deal

from this course.

60% 40%

Used procedures and methods 80% 20%

conducive to learning.

Table 3: Student course evaluation scores. These are standard. Questions asked after every undergraduate course at

Baylor.

To provide additional evidence of the impact of formal training in computational thinking,

a half-day computational thinking workshop was conducted in December of 2011. Fifteen

participants were recruited to participate in a half-day computational thinking seminar. The

participants were undergraduate students at Baylor University, whose major field of study was

not computer science, mathematics, engineering, or a lab science. Of the 15 participants, 14

successfully completed both the pre-test and post-test for the CARS and CTPSI. The results of a

one-tailed paired t-test are reported in Table 4. These results show that formal training in

computational thinking reduces computer anxiety and increases the participants' ability to use

computational thinking in problem solving. Both the CRAS and CTPSI showed statistically

significant differences between the pre-test and posttest. The average CRAS score, which

measures computer anxiety, decreased from 42.14 to 38.79 which was statistically significant

with a t = 1.940 and a p-value < 0.037. And the average CTPSI score, which measures the

participants computational thinking ability, increased from 15.20 to 18.47. This increase was also

statistically significant, with t = 5.215 and a p-value < 0.001. These findings demonstrate that

formal training in computational thinking decreases computer anxiety while increasing the

participants’ ability to use computational thinking as a problem solving strategy.

 N Pre-Test Post-Test t p

CARS 14 42.14 38.79 1.940 0.037

CTPSI 14 15.20 18.47 5.215 0.0001

Table 4: Half-Day Computational Thinking Workshop. Computer Anxiety and Computational Thinking. One Tailed Paired t-test.

8. CONCLUSIONS

The course we have developed advances the state of computational education in several

ways. It is specifically focused on helping non-majors develop facility in applying computation

to real problems in other disciplines, including their own. The principal investigators believe that

these types of students are not well served by introductory computing courses intended for

computer science majors, and other courses available at the university are not intended to

educate students in computational thinking.

The proposed course attempts to correct this deficiency. Rather than focusing on

computational approaches themselves, the course material engages students by focusing on a

broad sampling of problems from across the university. While a typical student in a non-

technical course would not normally have access to computation as a problem-solving resource,

students completing this course have an understanding of the fundamental concepts and

experience with available tools sufficient to permit them to apply computation to problems they

encounter in their own area of specialization.

If technology is to continue having a positive impact in society, it is essential for the people

who interact with technology to understand how to effectively use and create with it. These skills

are relevant not only to those for whom technology is a focus but also to those for whom it is

simply a means to an end. The proposed course broadens participation in computing because it is

specifically intended to equip non-computer scientists with the ability to think computationally

and to use computation in problem solving. This course directly benefits those students

completing it by enabling them to apply computation effectively and to understand how it can be

applied.

Efforts to develop a “problem library” featuring application areas collected from across the

university also help build and maintain connections between faculty in computer science and the

other disciplines. This effort has broad support from faculty inside the department and elsewhere

in the university. Experience in developing this course and its supporting materials benefit a

broader community by providing a curriculum, software tools, and a body of problems that can

be used in other settings to educate students in computational thinking.

Future work includes dissemination through teacher training and making this curriculum

available on the web. We plan to hold training workshops in this curriculum for K-12 as well as

university instructors. We also plan to offer the course again soon with a larger class of students.

9. REFERENCES

[1] M. Buckley. Viewpoint: Computing as social science. Communications of the ACM, 52(4),

29-30, 2009.

[2] T. J. Cortina. An introduction to computer science for non-majors using principles of

computation. SIGCSE Bulletin, 39(1): 218-222, 2007.

[3] P. J. Denning. The profession of IT beyond computational thinking. Communications Of the

ACM, 52(6):28-30, June 2009.

[4] S. Hambrusch, C. Hoffmann, J. T. Korb, M. Haugan, and A. L. Hosking. A multidisciplinary

approach towards computational thinking for science majors. In SIGCSE '09: Proceedings of

the 40th ACM technical symposium on Computer science education, pages 183-187, New

York, NY, USA, 2009. ACM.

[5] O. Hazzan. Reflections on teaching abstraction and other soft ideas. SIGCSE Bulletin,

40(2):40-43, 2008.

[6] R. K. Heinssen, C. R. Glass, and L. A. Knight. Assessing computer anxiety: Development

and validation of the computer anxiety rating scale. Computers in Human Behavior, 3(1):49-

59, 1987.

[7] J. Kramer. Is abstraction the key to computing? Communications of the ACM, 50(4):36-42,

2007.

[8] J. J. Lu and G. H. Fletcher. Thinking about computational thinking. In Proceedings of the

40th ACM technical symposium' on Computer science education, SIGCSE '09, pages 260-

264, New York, NY, USA, 2009. ACM.

[9] Kuhn, Steven, "Prisoner's Dilemma", The Stanford Encyclopedia of Philosophy (Spring 2009

Edition), Edward N. Zalta (ed.),

URL=<http://plato.stanford.edu/archives/spr2009/entries/prisoner-dilemma/>.

[10] L. Perkovic, A. Settle, S. Hwang, and J. Jones. A framework for computational thinking

across the curriculum. In Proceedings of the fifteenth annual conference on Innovation and

technology in computer science education, ITiCSE '10, pages 123-127, New York, NY, USA,

2010. ACM.

[11] S.M. Pulimood and U. Wolz. Problem solving in community: a necessary shift in CS

pedagogy. In SIGCSE '08: Proceedings of the 39th SIGCSE technical symposium on

Computer science education, pages 210-214, New York, NY, USA, 2008. ACM.

[12] H. Qin. Teaching computational thinking through bioinformatics to biology students. In

SIGCSE '09: Proceedings of the 40th ACM technical symposium on Computer science

education, pages 188-191, New York, NY, USA, 2009. ACM.

[13] G. Wilson, C. Alvarado, J. Campbell, R. Landau, and R. Sedgwick. CS-1 for scientists.

SIGCSE Bulletin, 40(1): 36-37, 2008.

[14] J. M. Wing. Computational thinking. Communications of the ACM, 49(3): 33-35, 2006.

